Package index
-
Arabidopsis - Arabidopsis clipping/fertilization data
-
GHrule() - Univariate Gauss-Hermite quadrature rule
-
InstEval - University Lecture/Instructor Evaluations by Students at ETH
-
NelderMead() - Class
"NelderMead"of Nelder-Mead optimizers and its Generator
-
Nelder_Mead() - Nelder-Mead Optimization of Parameters, Possibly (Box) Constrained
-
Pastes - Paste strength by batch and cask
-
Penicillin - Variation in penicillin testing
-
VarCorr(<merMod>)as.data.frame(<VarCorr.merMod>)print(<VarCorr.merMod>) - Extract Variance and Correlation Components
-
VerbAgg - Verbal Aggression item responses
-
allFit() - Refit a fitted model with all available optimizers
-
bootMer() - Model-based (Semi-)Parametric Bootstrap for Mixed Models
-
cake - Breakage Angle of Chocolate Cakes
-
cbpp - Contagious bovine pleuropneumonia
-
checkConv() - Extended Convergence Checking
-
confint(<merMod>)confint(<thpr>) - Compute Confidence Intervals for Parameters of a [ng]lmer Fit
-
convergence - Assessing Convergence for Fitted Models
-
devcomp() - Extract the deviance component list
-
devfun2() - Deviance Function in Terms of Standard Deviations/Correlations
-
drop1(<merMod>) - Drop all possible single fixed-effect terms from a mixed effect model
-
dummy() - Dummy variables (experimental)
-
factorize() - Attempt to convert grouping variables to factors
-
fixef(<merMod>) - Extract fixed-effects estimates
-
fortify.merMod()getData(<merMod>) - add information to data based on a fitted model
-
getME() - Extract or Get Generalized Components from a Fitted Mixed Effects Model
-
glmFamily-class - Class
"glmFamily"- a reference class forfamily
-
glmFamily() - Generator object for the
glmFamilyclass
-
glmer() - Fitting Generalized Linear Mixed-Effects Models
-
glmer.nb() - Fitting Negative Binomial GLMMs
-
glmerLaplaceHandle() - Handle for
glmerLaplace
-
golden() - Class
"golden"and Generator for Golden Search Optimizer Class
-
grouseticks - Data on red grouse ticks from Elston et al. 2001
-
hatvalues(<merMod>) - Diagonal elements of the hat matrix
-
influence(<merMod>)cooks.distance(<influence.merMod>)dfbeta(<influence.merMod>)dfbetas(<influence.merMod>) - Influence Diagnostics for Mixed-Effects Models
-
isNested() - Is f1 nested within f2?
-
isSingular() - Test Fitted Model for (Near) Singularity
-
lmList() - Fit List of lm or glm Objects with a Common Model
-
lmList4-classshow,lmList4-method - Class "lmList4" of 'lm' Objects on Common Model
-
glmResp-classlmerResp-classlmResp-classnlsResp-class - Reference Classes for Response Modules,
"(lm|glm|nls|lmer)Resp"
-
lmResp() - Generator objects for the response classes
-
lme4lme4-package - Linear, generalized linear, and nonlinear mixed models
-
lme4_testlevel() - Detect testing level for lme4 examples and tests
-
lmer() - Fit Linear Mixed-Effects Models
-
lmerControl()glmerControl()nlmerControl().makeCC() - Control of Mixed Model Fitting
-
anova(<merMod>)as.function(<merMod>)coef(<merMod>)deviance(<merMod>)REMLcrit()extractAIC(<merMod>)family(<merMod>)formula(<merMod>)fitted(<merMod>)logLik(<merMod>)nobs(<merMod>)ngrps(<merMod>)terms(<merMod>)model.frame(<merMod>)model.matrix(<merMod>)print(<merMod>)summary(<merMod>)print(<summary.merMod>)update(<merMod>)weights(<merMod>) - Class "merMod" of Fitted Mixed-Effect Models
-
merPredD-class - Class
"merPredD"- a Dense Predictor Reference Class
-
merPredD() - Generator object for the
merPredDclass
-
mkMerMod() - Create a 'merMod' Object
-
mkNewReTrms() - Make new random effect terms for prediction
-
mkRespMod() - Create an lmerResp, glmResp or nlsResp instance
-
mkParsTemplate()mkDataTemplate() - Make templates suitable for guiding mixed model simulations
-
mkVarCorr() - Make Variance and Correlation Matrices from
theta
-
lFormula()mkLmerDevfun()optimizeLmer()glFormula()mkGlmerDevfun()optimizeGlmer()updateGlmerDevfun() - Modular Functions for Mixed Model Fits
-
namedList() - Self-naming list function
-
ngrps() - Number of Levels of a Factor or a "merMod" Model
-
nlformula() - Manipulate a Nonlinear Model Formula
-
nlmer() - Fitting Nonlinear Mixed-Effects Models
-
nloptwrap()nlminbwrap() - Wrappers for additional optimizers
-
plot(<merMod>)qqmath(<merMod>) - Diagnostic Plots for 'merMod' Fits
-
xyplot(<thpr>)densityplot(<thpr>)splom(<thpr>) - Mixed-Effects Profile Plots (Regular / Density / Pairs)
-
predict(<merMod>) - Predictions from a model at new data values
-
profile(<merMod>)as.data.frame(<thpr>)log(<thpr>)logProf()varianceProf() - Profile method for merMod objects
-
ranef(<merMod>)dotplot(<ranef.mer>)qqmath(<ranef.mer>)as.data.frame(<ranef.mer>) - Extract the modes of the random effects
-
rePCA() - PCA of random-effects covariance matrix
-
rePos-class - Class
"rePos"
-
rePos() - Generator object for the rePos (random-effects positions) class
-
refit() - Refit a (merMod) Model with a Different Response
-
refitML() - Refit a Model by Maximum Likelihood Criterion
-
residuals(<merMod>)residuals(<lmResp>)residuals(<glmResp>) - residuals of merMod objects
-
sigma(<merMod>) - Extract Residual Standard Deviation 'Sigma'
-
simulate(<formula>) - A
simulateMethod forformulaobjects that dispatches based on the Left-Hand Side
-
simulate(<merMod>).simulateFun() - Simulate Responses From
merModObject
-
sleepstudy - Reaction times in a sleep deprivation study
-
troubleshooting - Troubleshooting
-
llikAIC()methTitle().prt.methTit().prt.family().prt.resids().prt.call().prt.aictab().prt.grps().prt.warn().prt.VC()formatVC() - Print and Summary Method Utilities for Mixed Effects
-
mlist2vec()vec2mlist()vec2STlist()sdcor2cov()cov2sdcor()Vv_to_Cv()Sv_to_Cv()Cv_to_Vv()Cv_to_Sv() - Convert between representations of (co-)variance structures
-
vcov(<merMod>) - Covariance matrix of estimated parameters