Skip to contents

All functions

Arabidopsis
Arabidopsis clipping/fertilization data
Dyestuff Dyestuff2
Yield of dyestuff by batch
GHrule()
Univariate Gauss-Hermite quadrature rule
GQdk() GQN
Sparse Gaussian / Gauss-Hermite Quadrature grid
InstEval
University Lecture/Instructor Evaluations by Students at ETH
NelderMead()
Class "NelderMead" of Nelder-Mead optimizers and its Generator
Nelder_Mead()
Nelder-Mead Optimization of Parameters, Possibly (Box) Constrained
Pastes
Paste strength by batch and cask
Penicillin
Variation in penicillin testing
VarCorr(<merMod>) as.data.frame(<VarCorr.merMod>) print(<VarCorr.merMod>)
Extract Variance and Correlation Components
VerbAgg
Verbal Aggression item responses
allFit()
Refit a fitted model with all available optimizers
bootMer()
Model-based (Semi-)Parametric Bootstrap for Mixed Models
cake
Breakage Angle of Chocolate Cakes
cbpp
Contagious bovine pleuropneumonia
checkConv()
Extended Convergence Checking
confint(<merMod>) confint(<thpr>)
Compute Confidence Intervals for Parameters of a [ng]lmer Fit
convergence
Assessing Convergence for Fitted Models
devcomp()
Extract the deviance component list
devfun2()
Deviance Function in Terms of Standard Deviations/Correlations
drop1(<merMod>)
Drop all possible single fixed-effect terms from a mixed effect model
dummy()
Dummy variables (experimental)
factorize()
Attempt to convert grouping variables to factors
fixef(<merMod>)
Extract fixed-effects estimates
fortify.merMod() getData(<merMod>)
add information to data based on a fitted model
getME()
Extract or Get Generalized Components from a Fitted Mixed Effects Model
glmFamily-class
Class "glmFamily" - a reference class for family
glmFamily()
Generator object for the glmFamily class
glmer()
Fitting Generalized Linear Mixed-Effects Models
glmer.nb()
Fitting Negative Binomial GLMMs
glmerLaplaceHandle()
Handle for glmerLaplace
golden()
Class "golden" and Generator for Golden Search Optimizer Class
grouseticks
Data on red grouse ticks from Elston et al. 2001
hatvalues(<merMod>)
Diagonal elements of the hat matrix
influence(<merMod>) cooks.distance(<influence.merMod>) dfbeta(<influence.merMod>) dfbetas(<influence.merMod>)
Influence Diagnostics for Mixed-Effects Models
isNested()
Is f1 nested within f2?
isREML() isLMM() isNLMM() isGLMM()
Check characteristics of models
isSingular()
Test Fitted Model for (Near) Singularity
lmList()
Fit List of lm or glm Objects with a Common Model
lmList4-class show,lmList4-method
Class "lmList4" of 'lm' Objects on Common Model
glmResp-class lmerResp-class lmResp-class nlsResp-class
Reference Classes for Response Modules, "(lm|glm|nls|lmer)Resp"
lmResp()
Generator objects for the response classes
lme4 lme4-package
Linear, generalized linear, and nonlinear mixed models
lme4_testlevel()
Detect testing level for lme4 examples and tests
lmer()
Fit Linear Mixed-Effects Models
lmerControl() glmerControl() nlmerControl() .makeCC()
Control of Mixed Model Fitting
anova(<merMod>) as.function(<merMod>) coef(<merMod>) deviance(<merMod>) REMLcrit() extractAIC(<merMod>) family(<merMod>) formula(<merMod>) fitted(<merMod>) logLik(<merMod>) nobs(<merMod>) ngrps(<merMod>) terms(<merMod>) model.frame(<merMod>) model.matrix(<merMod>) print(<merMod>) summary(<merMod>) print(<summary.merMod>) update(<merMod>) weights(<merMod>)
Class "merMod" of Fitted Mixed-Effect Models
merPredD-class
Class "merPredD" - a Dense Predictor Reference Class
merPredD()
Generator object for the merPredD class
mkMerMod()
Create a 'merMod' Object
mkNewReTrms()
Make new random effect terms for prediction
mkRespMod()
Create an lmerResp, glmResp or nlsResp instance
mkParsTemplate() mkDataTemplate()
Make templates suitable for guiding mixed model simulations
mkVarCorr()
Make Variance and Correlation Matrices from theta
lFormula() mkLmerDevfun() optimizeLmer() glFormula() mkGlmerDevfun() optimizeGlmer() updateGlmerDevfun()
Modular Functions for Mixed Model Fits
namedList()
Self-naming list function
ngrps()
Number of Levels of a Factor or a "merMod" Model
nlformula()
Manipulate a Nonlinear Model Formula
nlmer()
Fitting Nonlinear Mixed-Effects Models
nloptwrap() nlminbwrap()
Wrappers for additional optimizers
plot(<merMod>) qqmath(<merMod>)
Diagnostic Plots for 'merMod' Fits
xyplot(<thpr>) densityplot(<thpr>) splom(<thpr>)
Mixed-Effects Profile Plots (Regular / Density / Pairs)
predict(<merMod>)
Predictions from a model at new data values
profile(<merMod>) as.data.frame(<thpr>) log(<thpr>) logProf() varianceProf()
Profile method for merMod objects
mcmcsamp pvalues
Getting p-values for fitted models
ranef(<merMod>) dotplot(<ranef.mer>) qqmath(<ranef.mer>) as.data.frame(<ranef.mer>)
Extract the modes of the random effects
rePCA()
PCA of random-effects covariance matrix
rePos-class
Class "rePos"
rePos()
Generator object for the rePos (random-effects positions) class
refit()
Refit a (merMod) Model with a Different Response
refitML()
Refit a Model by Maximum Likelihood Criterion
residuals(<merMod>) residuals(<lmResp>) residuals(<glmResp>)
residuals of merMod objects
sigma(<merMod>)
Extract Residual Standard Deviation 'Sigma'
simulate(<formula>)
A simulate Method for formula objects that dispatches based on the Left-Hand Side
simulate(<merMod>) .simulateFun()
Simulate Responses From merMod Object
sleepstudy
Reaction times in a sleep deprivation study
troubleshooting
Troubleshooting
llikAIC() methTitle() .prt.methTit() .prt.family() .prt.resids() .prt.call() .prt.aictab() .prt.grps() .prt.warn() .prt.VC() formatVC()
Print and Summary Method Utilities for Mixed Effects
mlist2vec() vec2mlist() vec2STlist() sdcor2cov() cov2sdcor() Vv_to_Cv() Sv_to_Cv() Cv_to_Vv() Cv_to_Sv()
Convert between representations of (co-)variance structures
vcov(<merMod>)
Covariance matrix of estimated parameters