Package index
-
Arabidopsis
- Arabidopsis clipping/fertilization data
-
GHrule()
- Univariate Gauss-Hermite quadrature rule
-
InstEval
- University Lecture/Instructor Evaluations by Students at ETH
-
NelderMead()
- Class
"NelderMead"
of Nelder-Mead optimizers and its Generator
-
Nelder_Mead()
- Nelder-Mead Optimization of Parameters, Possibly (Box) Constrained
-
Pastes
- Paste strength by batch and cask
-
Penicillin
- Variation in penicillin testing
-
VarCorr(<merMod>)
as.data.frame(<VarCorr.merMod>)
print(<VarCorr.merMod>)
- Extract Variance and Correlation Components
-
VerbAgg
- Verbal Aggression item responses
-
allFit()
- Refit a fitted model with all available optimizers
-
bootMer()
- Model-based (Semi-)Parametric Bootstrap for Mixed Models
-
cake
- Breakage Angle of Chocolate Cakes
-
cbpp
- Contagious bovine pleuropneumonia
-
checkConv()
- Extended Convergence Checking
-
confint(<merMod>)
confint(<thpr>)
- Compute Confidence Intervals for Parameters of a [ng]lmer Fit
-
convergence
- Assessing Convergence for Fitted Models
-
devcomp()
- Extract the deviance component list
-
devfun2()
- Deviance Function in Terms of Standard Deviations/Correlations
-
drop1(<merMod>)
- Drop all possible single fixed-effect terms from a mixed effect model
-
dummy()
- Dummy variables (experimental)
-
factorize()
- Attempt to convert grouping variables to factors
-
fixef(<merMod>)
- Extract fixed-effects estimates
-
fortify.merMod()
getData(<merMod>)
- add information to data based on a fitted model
-
getME()
- Extract or Get Generalized Components from a Fitted Mixed Effects Model
-
glmFamily-class
- Class
"glmFamily"
- a reference class forfamily
-
glmFamily()
- Generator object for the
glmFamily
class
-
glmer()
- Fitting Generalized Linear Mixed-Effects Models
-
glmer.nb()
- Fitting Negative Binomial GLMMs
-
glmerLaplaceHandle()
- Handle for
glmerLaplace
-
golden()
- Class
"golden"
and Generator for Golden Search Optimizer Class
-
grouseticks
- Data on red grouse ticks from Elston et al. 2001
-
hatvalues(<merMod>)
- Diagonal elements of the hat matrix
-
influence(<merMod>)
cooks.distance(<influence.merMod>)
dfbeta(<influence.merMod>)
dfbetas(<influence.merMod>)
- Influence Diagnostics for Mixed-Effects Models
-
isNested()
- Is f1 nested within f2?
-
isSingular()
- Test Fitted Model for (Near) Singularity
-
lmList()
- Fit List of lm or glm Objects with a Common Model
-
lmList4-class
show,lmList4-method
- Class "lmList4" of 'lm' Objects on Common Model
-
glmResp-class
lmerResp-class
lmResp-class
nlsResp-class
- Reference Classes for Response Modules,
"(lm|glm|nls|lmer)Resp"
-
lmResp()
- Generator objects for the response classes
-
lme4
lme4-package
- Linear, generalized linear, and nonlinear mixed models
-
lme4_testlevel()
- Detect testing level for lme4 examples and tests
-
lmer()
- Fit Linear Mixed-Effects Models
-
lmerControl()
glmerControl()
nlmerControl()
.makeCC()
- Control of Mixed Model Fitting
-
anova(<merMod>)
as.function(<merMod>)
coef(<merMod>)
deviance(<merMod>)
REMLcrit()
extractAIC(<merMod>)
family(<merMod>)
formula(<merMod>)
fitted(<merMod>)
logLik(<merMod>)
nobs(<merMod>)
ngrps(<merMod>)
terms(<merMod>)
model.frame(<merMod>)
model.matrix(<merMod>)
print(<merMod>)
summary(<merMod>)
print(<summary.merMod>)
update(<merMod>)
weights(<merMod>)
- Class "merMod" of Fitted Mixed-Effect Models
-
merPredD-class
- Class
"merPredD"
- a Dense Predictor Reference Class
-
merPredD()
- Generator object for the
merPredD
class
-
mkMerMod()
- Create a 'merMod' Object
-
mkNewReTrms()
- Make new random effect terms for prediction
-
mkRespMod()
- Create an lmerResp, glmResp or nlsResp instance
-
mkParsTemplate()
mkDataTemplate()
- Make templates suitable for guiding mixed model simulations
-
mkVarCorr()
- Make Variance and Correlation Matrices from
theta
-
lFormula()
mkLmerDevfun()
optimizeLmer()
glFormula()
mkGlmerDevfun()
optimizeGlmer()
updateGlmerDevfun()
- Modular Functions for Mixed Model Fits
-
namedList()
- Self-naming list function
-
ngrps()
- Number of Levels of a Factor or a "merMod" Model
-
nlformula()
- Manipulate a Nonlinear Model Formula
-
nlmer()
- Fitting Nonlinear Mixed-Effects Models
-
nloptwrap()
nlminbwrap()
- Wrappers for additional optimizers
-
plot(<merMod>)
qqmath(<merMod>)
- Diagnostic Plots for 'merMod' Fits
-
xyplot(<thpr>)
densityplot(<thpr>)
splom(<thpr>)
- Mixed-Effects Profile Plots (Regular / Density / Pairs)
-
predict(<merMod>)
- Predictions from a model at new data values
-
profile(<merMod>)
as.data.frame(<thpr>)
log(<thpr>)
logProf()
varianceProf()
- Profile method for merMod objects
-
ranef(<merMod>)
dotplot(<ranef.mer>)
qqmath(<ranef.mer>)
as.data.frame(<ranef.mer>)
- Extract the modes of the random effects
-
rePCA()
- PCA of random-effects covariance matrix
-
rePos-class
- Class
"rePos"
-
rePos()
- Generator object for the rePos (random-effects positions) class
-
refit()
- Refit a (merMod) Model with a Different Response
-
refitML()
- Refit a Model by Maximum Likelihood Criterion
-
residuals(<merMod>)
residuals(<lmResp>)
residuals(<glmResp>)
- residuals of merMod objects
-
sigma(<merMod>)
- Extract Residual Standard Deviation 'Sigma'
-
simulate(<formula>)
- A
simulate
Method forformula
objects that dispatches based on the Left-Hand Side
-
simulate(<merMod>)
.simulateFun()
- Simulate Responses From
merMod
Object
-
sleepstudy
- Reaction times in a sleep deprivation study
-
troubleshooting
- Troubleshooting
-
llikAIC()
methTitle()
.prt.methTit()
.prt.family()
.prt.resids()
.prt.call()
.prt.aictab()
.prt.grps()
.prt.warn()
.prt.VC()
formatVC()
- Print and Summary Method Utilities for Mixed Effects
-
mlist2vec()
vec2mlist()
vec2STlist()
sdcor2cov()
cov2sdcor()
Vv_to_Cv()
Sv_to_Cv()
Cv_to_Vv()
Cv_to_Sv()
- Convert between representations of (co-)variance structures
-
vcov(<merMod>)
- Covariance matrix of estimated parameters