Fit Linear Mixed-Effects Models
lmer.RdFit a linear mixed-effects model (LMM) to data, via REML or maximum likelihood.
Usage
lmer(formula, data = NULL, REML = TRUE, control = lmerControl(),
start = NULL, verbose = 0L, subset, weights, na.action,
offset, contrasts = NULL, devFunOnly = FALSE)Arguments
- formula
a two-sided linear formula object describing both the fixed-effects and random-effects part of the model, with the response on the left of a
~operator and the terms, separated by+operators, on the right. Random-effects terms are distinguished by vertical bars (|) separating expressions for design matrices from grouping factors. Two vertical bars (||) can be used to specify multiple uncorrelated random effects for the same grouping variable. (Because of the way it is implemented, the||-syntax works only for design matrices containing numeric (continuous) predictors; to fit models with independent categorical effects, seedummyor thelmer_altfunction from the afex package.)- data
an optional data frame containing the variables named in
formula. By default the variables are taken from the environment from whichlmeris called. Whiledatais optional, the package authors strongly recommend its use, especially when later applying methods such asupdateanddrop1to the fitted model (such methods are not guaranteed to work properly ifdatais omitted). Ifdatais omitted, variables will be taken from the environment offormula(if specified as a formula) or from the parent frame (if specified as a character vector).- REML
logical scalar - Should the estimates be chosen to optimize the REML criterion (as opposed to the log-likelihood)?
- control
a list (of correct class, resulting from
lmerControl()orglmerControl()respectively) containing control parameters, including the nonlinear optimizer to be used and parameters to be passed through to the nonlinear optimizer, see the*lmerControldocumentation for details.- start
a named
listof starting values for the parameters in the model. Forlmerthis can be a numeric vector or a list with one component named"theta".- verbose
integer scalar. If
> 0verbose output is generated during the optimization of the parameter estimates. If> 1verbose output is generated during the individual penalized iteratively reweighted least squares (PIRLS) steps.- subset
an optional expression indicating the subset of the rows of
datathat should be used in the fit. This can be a logical vector, or a numeric vector indicating which observation numbers are to be included, or a character vector of the row names to be included. All observations are included by default.- weights
an optional vector of ‘prior weights’ to be used in the fitting process. Should be
NULLor a numeric vector. Priorweightsare not normalized or standardized in any way. In particular, the diagonal of the residual covariance matrix is the squared residual standard deviation parametersigmatimes the vector of inverseweights. Therefore, if theweightshave relatively large magnitudes, then in order to compensate, thesigmaparameter will also need to have a relatively large magnitude.- na.action
a function that indicates what should happen when the data contain
NAs. The default action (na.omit, inherited from the 'factory fresh' value ofgetOption("na.action")) strips any observations with any missing values in any variables.- offset
this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be
NULLor a numeric vector of length equal to the number of cases. One or moreoffsetterms can be included in the formula instead or as well, and if more than one is specified their sum is used. Seemodel.offset.- contrasts
an optional list. See the
contrasts.argofmodel.matrix.default.- devFunOnly
logical - return only the deviance evaluation function. Note that because the deviance function operates on variables stored in its environment, it may not return exactly the same values on subsequent calls (but the results should always be within machine tolerance).
Value
An object of class merMod (more specifically,
an object of subclass lmerMod), for which many methods
are available (e.g. methods(class="merMod"))
Note
In earlier version of the lme4 package, a method argument was
used. Its functionality has been replaced by the REML argument.
Also, lmer(.) allowed a family argument (to effectively
switch to glmer(.)). This has been deprecated in summer 2013,
and been disabled in spring 2019.
Details
If the
formulaargument is specified as a character vector, the function will attempt to coerce it to a formula. However, this is not recommended (users who want to construct formulas by pasting together components are advised to useas.formulaorreformulate); model fits will work but subsequent methods such asdrop1,updatemay fail.When handling perfectly collinear predictor variables (i.e. design matrices of less than full rank),
[gn]lmeris not quite as sophisticated as some simpler modeling frameworks such aslmandglm. While it does automatically drop collinear variables (with a message rather than a warning), it does not automatically fill inNAvalues for the dropped coefficients; these can be added viafixef(fitted.model,add.dropped=TRUE). This information can also be retrieved viaattr(getME(fitted.model,"X"),"col.dropped").the deviance function returned when
devFunOnlyisTRUEtakes a single numeric vector argument, representing thethetavector. This vector defines the scaled variance-covariance matrices of the random effects, in the Cholesky parameterization. For models with only simple (intercept-only) random effects,thetais a vector of the standard deviations of the random effects. For more complex or multiple random effects, runninggetME(.,"theta")to retrieve thethetavector for a fitted model and examining the names of the vector is probably the easiest way to determine the correspondence between the elements of thethetavector and elements of the lower triangles of the Cholesky factors of the random effects.
Examples
## linear mixed models - reference values from older code
(fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy))
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: Reaction ~ Days + (Days | Subject)
#> Data: sleepstudy
#> REML criterion at convergence: 1743.628
#> Random effects:
#> Groups Name Std.Dev. Corr
#> Subject (Intercept) 24.741
#> Days 5.922 0.07
#> Residual 25.592
#> Number of obs: 180, groups: Subject, 18
#> Fixed Effects:
#> (Intercept) Days
#> 251.41 10.47
summary(fm1)# (with its own print method; see class?merMod % ./merMod-class.Rd
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: Reaction ~ Days + (Days | Subject)
#> Data: sleepstudy
#>
#> REML criterion at convergence: 1743.6
#>
#> Scaled residuals:
#> Min 1Q Median 3Q Max
#> -3.9536 -0.4634 0.0231 0.4634 5.1793
#>
#> Random effects:
#> Groups Name Variance Std.Dev. Corr
#> Subject (Intercept) 612.10 24.741
#> Days 35.07 5.922 0.07
#> Residual 654.94 25.592
#> Number of obs: 180, groups: Subject, 18
#>
#> Fixed effects:
#> Estimate Std. Error t value
#> (Intercept) 251.405 6.825 36.838
#> Days 10.467 1.546 6.771
#>
#> Correlation of Fixed Effects:
#> (Intr)
#> Days -0.138
str(terms(fm1))
#> Classes 'terms', 'formula' language Reaction ~ Days
#> ..- attr(*, "variables")= language list(Reaction, Days)
#> ..- attr(*, "factors")= int [1:2, 1] 0 1
#> .. ..- attr(*, "dimnames")=List of 2
#> .. .. ..$ : chr [1:2] "Reaction" "Days"
#> .. .. ..$ : chr "Days"
#> ..- attr(*, "term.labels")= chr "Days"
#> ..- attr(*, "order")= int 1
#> ..- attr(*, "intercept")= int 1
#> ..- attr(*, "response")= int 1
#> ..- attr(*, ".Environment")=<environment: 0x561f6ed52738>
#> ..- attr(*, "predvars")= language list(Reaction, Days)
stopifnot(identical(terms(fm1, fixed.only=FALSE),
terms(model.frame(fm1))))
attr(terms(fm1, FALSE), "dataClasses") # fixed.only=FALSE needed for dataCl.
#> Reaction Days Subject
#> "numeric" "numeric" "factor"
## Maximum Likelihood (ML), and "monitor" iterations via 'verbose':
fm1_ML <- update(fm1, REML=FALSE, verbose = 1)
#> iteration: 1
#> f(x) = 1784.642296
#> iteration: 2
#> f(x) = 1790.125637
#> iteration: 3
#> f(x) = 1798.999624
#> iteration: 4
#> f(x) = 1803.853200
#> iteration: 5
#> f(x) = 1800.613981
#> iteration: 6
#> f(x) = 1798.604631
#> iteration: 7
#> f(x) = 1752.260737
#> iteration: 8
#> f(x) = 1797.587692
#> iteration: 9
#> f(x) = 1754.954110
#> iteration: 10
#> f(x) = 1753.695682
#> iteration: 11
#> f(x) = 1754.816999
#> iteration: 12
#> f(x) = 1753.106734
#> iteration: 13
#> f(x) = 1752.939377
#> iteration: 14
#> f(x) = 1752.256879
#> iteration: 15
#> f(x) = 1752.057448
#> iteration: 16
#> f(x) = 1752.022389
#> iteration: 17
#> f(x) = 1752.022728
#> iteration: 18
#> f(x) = 1751.971687
#> iteration: 19
#> f(x) = 1751.952603
#> iteration: 20
#> f(x) = 1751.948524
#> iteration: 21
#> f(x) = 1751.987176
#> iteration: 22
#> f(x) = 1751.983213
#> iteration: 23
#> f(x) = 1751.951971
#> iteration: 24
#> f(x) = 1751.946276
#> iteration: 25
#> f(x) = 1751.946698
#> iteration: 26
#> f(x) = 1751.947568
#> iteration: 27
#> f(x) = 1751.945312
#> iteration: 28
#> f(x) = 1751.944180
#> iteration: 29
#> f(x) = 1751.943533
#> iteration: 30
#> f(x) = 1751.942441
#> iteration: 31
#> f(x) = 1751.942170
#> iteration: 32
#> f(x) = 1751.942370
#> iteration: 33
#> f(x) = 1751.942278
#> iteration: 34
#> f(x) = 1751.942204
#> iteration: 35
#> f(x) = 1751.941309
#> iteration: 36
#> f(x) = 1751.940931
#> iteration: 37
#> f(x) = 1751.940567
#> iteration: 38
#> f(x) = 1751.940179
#> iteration: 39
#> f(x) = 1751.940082
#> iteration: 40
#> f(x) = 1751.940270
#> iteration: 41
#> f(x) = 1751.941501
#> iteration: 42
#> f(x) = 1751.939489
#> iteration: 43
#> f(x) = 1751.939392
#> iteration: 44
#> f(x) = 1751.939398
#> iteration: 45
#> f(x) = 1751.939425
#> iteration: 46
#> f(x) = 1751.939355
#> iteration: 47
#> f(x) = 1751.939490
#> iteration: 48
#> f(x) = 1751.939363
#> iteration: 49
#> f(x) = 1751.939345
#> iteration: 50
#> f(x) = 1751.939344
#> iteration: 51
#> f(x) = 1751.939345
#> iteration: 52
#> f(x) = 1751.939348
#> iteration: 53
#> f(x) = 1751.939344
(fm2 <- lmer(Reaction ~ Days + (Days || Subject), sleepstudy))
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: Reaction ~ Days + ((1 | Subject) + (0 + Days | Subject))
#> Data: sleepstudy
#> REML criterion at convergence: 1743.669
#> Random effects:
#> Groups Name Std.Dev.
#> Subject (Intercept) 25.051
#> Subject.1 Days 5.988
#> Residual 25.565
#> Number of obs: 180, groups: Subject, 18
#> Fixed Effects:
#> (Intercept) Days
#> 251.41 10.47
anova(fm1, fm2)
#> refitting model(s) with ML (instead of REML)
#> Data: sleepstudy
#> Models:
#> fm2: Reaction ~ Days + ((1 | Subject) + (0 + Days | Subject))
#> fm1: Reaction ~ Days + (Days | Subject)
#> npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)
#> fm2 5 1762.0 1778.0 -876.00 1752.0
#> fm1 6 1763.9 1783.1 -875.97 1751.9 0.0639 1 0.8004
sm2 <- summary(fm2)
print(fm2, digits=7, ranef.comp="Var") # the print.merMod() method
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: Reaction ~ Days + ((1 | Subject) + (0 + Days | Subject))
#> Data: sleepstudy
#> REML criterion at convergence: 1743.669
#> Random effects:
#> Groups Name Variance
#> Subject (Intercept) 627.56905
#> Subject.1 Days 35.85838
#> Residual 653.58350
#> Number of obs: 180, groups: Subject, 18
#> Fixed Effects:
#> (Intercept) Days
#> 251.40510 10.46729
print(sm2, digits=3, corr=FALSE) # the print.summary.merMod() method
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: Reaction ~ Days + ((1 | Subject) + (0 + Days | Subject))
#> Data: sleepstudy
#>
#> REML criterion at convergence: 1743.7
#>
#> Scaled residuals:
#> Min 1Q Median 3Q Max
#> -3.963 -0.463 0.020 0.465 5.186
#>
#> Random effects:
#> Groups Name Variance Std.Dev.
#> Subject (Intercept) 627.6 25.05
#> Subject.1 Days 35.9 5.99
#> Residual 653.6 25.57
#> Number of obs: 180, groups: Subject, 18
#>
#> Fixed effects:
#> Estimate Std. Error t value
#> (Intercept) 251.41 6.89 36.51
#> Days 10.47 1.56 6.71
## Fit sex-specific variances by constructing numeric dummy variables
## for sex and sex:age; in this case the estimated variance differences
## between groups in both intercept and slope are zero ...
data(Orthodont,package="nlme")
Orthodont$nsex <- as.numeric(Orthodont$Sex=="Male")
Orthodont$nsexage <- with(Orthodont, nsex*age)
lmer(distance ~ age + (age|Subject) + (0+nsex|Subject) +
(0 + nsexage|Subject), data=Orthodont)
#> boundary (singular) fit: see help('isSingular')
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: distance ~ age + (age | Subject) + (0 + nsex | Subject) + (0 +
#> nsexage | Subject)
#> Data: Orthodont
#> REML criterion at convergence: 442.6367
#> Random effects:
#> Groups Name Std.Dev. Corr
#> Subject (Intercept) 2.3268096
#> age 0.2264158 -0.61
#> Subject.1 nsex 0.0001559
#> Subject.2 nsexage 0.0000000
#> Residual 1.3100560
#> Number of obs: 108, groups: Subject, 27
#> Fixed Effects:
#> (Intercept) age
#> 16.7611 0.6602
#> optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings