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Abstract

The methods in the lme4 package for R for �tting linear mixed

models are based on sparse matrix methods, especially the Cholesky

decomposition of sparse positive-semide�nite matrices, in a penalized

least squares representation of the conditional model for the response

given the random e�ects. The representation is similar to that in Hen-

derson's mixed-model equations. An alternative representation of the

calculations is as a generalized least squares problem. We describe the

two representations, show the equivalence of the two representations

and explain why we feel that the penalized least squares approach is

more versatile and more computationally e�cient.

1 De�nition of the model

We consider linear mixed models in which the random e�ects are represented
by a q-dimensional random vector, B, and the response is represented by an
n-dimensional random vector, Y . We observe a value, y, of the response.
The random e�ects are unobserved.

For our purposes, we will assume a �spherical� multivariate normal condi-
tional distribution of Y , given B. That is, we assume the variance-covariance
matrix of Y |B is simply σ2In, where In denotes the identity matrix of order
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n. (The term �spherical� refers to the fact that contours of the conditional
density are concentric spheres.)

The conditional mean, E[Y |B = b], is a linear function of b and the
p-dimensional �xed-e�ects parameter, β,

E[Y |B = b] = Xβ +Zb, (1)

whereX andZ are known model matrices of sizes n×p and n×q, respectively.
Thus

Y |B ∼ N
(
Xβ +Zb, σ2In

)
. (2)

The marginal distribution of the random e�ects

B ∼ N
(
0, σ2Σ(θ)

)
(3)

is also multivariate normal, with mean 0 and variance-covariance matrix
σ2Σ(θ). The scalar, σ2, in (3) is the same as the σ2 in (2). As described
in the next section, the relative variance-covariance matrix, Σ(θ), is a q × q
positive semide�nite matrix depending on a parameter vector, θ. Typically
the dimension of θ is much, much smaller than q.

1.1 Variance-covariance of the random e�ects

The relative variance-covariance matrix, Σ(θ), must be symmetric and pos-
itive semide�nite (i.e. x′Σx ≥ 0,∀x ∈ Rq). Because the estimate of a vari-
ance component can be zero, it is important to allow for a semide�nite Σ.
We do not assume that Σ is positive de�nite (i.e. x′Σx > 0,∀x ∈ Rq,x ̸= 0)
and, hence, we cannot assume that Σ−1 exists.

A positive semide�nite matrix such as Σ has a Cholesky decomposition
of the so-called �LDL′� form. We use a slight modi�cation of this form,

Σ(θ) = T (θ)S(θ)S(θ)T (θ)′, (4)

where T (θ) is a unit lower-triangular q × q matrix and S(θ) is a diagonal
q × q matrix with nonnegative diagonal elements that act as scale factors.
(They are the relative standard deviations of certain linear combinations of
the random e�ects.) Thus, T is a triangular matrix and S is a scale matrix.

Both T and S are highly patterned.
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1.2 Orthogonal random e�ects

Let us de�ne a q-dimensional random vector, U , of orthogonal random e�ects
with marginal distribution

U ∼ N
(
0, σ2Iq

)
(5)

and, for a given value of θ, express B as a linear transformation of U ,

B = T (θ)S(θ)U . (6)

Note that the transformation (6) gives the desired distribution of B in that
E[B] = TSE[U ] = 0 and

Var(B) = E[BB′] = TSE[UU ′]ST ′ = σ2TSST ′ = Σ.

The conditional distribution, Y |U , can be derived from Y |B as

Y |U ∼ N
(
Xβ +ZTSu, σ2I

)
(7)

We will write the transpose of ZTS as A. Because the matrices T and S
depend on the parameter θ, A is also a function of θ,

A′(θ) = ZT (θ)S(θ). (8)

In applications, the matrix Z is derived from indicator columns of the
levels of one or more factors in the data and is a sparse matrix, in the sense
that most of its elements are zero. The matrix A is also sparse. In fact, the
structure of T and S are such that pattern of nonzeros in A is that same as
that in Z ′.

1.3 Sparse matrix methods

The reason for de�ning A as the transpose of a model matrix is because A
is stored and manipulated as a sparse matrix. In the compressed column-
oriented storage form that we use for sparse matrices, there are advantages to
storingA as a matrix of n columns and q rows. In particular, the CHOLMOD
sparse matrix library allows us to evaluate the sparse Cholesky factor, L(θ),
a sparse lower triangular matrix that satis�es

L(θ)L(θ)′ = P (A(θ)A(θ)′ + Iq)P
′, (9)
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directly from A(θ).
In (9) the q × q matrix P is a ��ll-reducing� permutation matrix deter-

mined from the pattern of nonzeros in Z. P does not a�ect the statistical
theory (if U ∼ N (0, σ2I) then P ′U also has a N (0, σ2I) distribution be-
cause PP ′ = P ′P = I) but, because it a�ects the number of nonzeros in
L, it can have a tremendous impact on the amount storage required for L
and the time required to evaluate L from A. Indeed, it is precisely because
L(θ) can be evaluated quickly, even for complex models applied the large
data sets, that the lmer function is e�ective in �tting such models.

2 The penalized least squares approach to lin-

ear mixed models

Given a value of θ we form A(θ) from which we evaluate L(θ). We can then
solve for the q × p matrix, RZX , in the system of equations

L(θ)RZX = PA(θ)X (10)

and for the p× p upper triangular matrix, RX , satisfying

R′
XRX = X ′X −R′

ZXRZX (11)

The conditional mode, ũ(θ), of the orthogonal random e�ects and the

conditional mle, β̂(θ), of the �xed-e�ects parameters can be determined si-
multaneously as the solutions to a penalized least squares problem,[

ũ(θ)

β̂(θ)

]
= argmin

u,β

∥∥∥∥[y0
]
−
[
A′P ′ X
Iq 0

] [
u
β

]
,

∥∥∥∥2 (12)

for which the solution satis�es[
P (AA′ + I)P ′ PAX

X ′A′P ′ X ′X

] [
ũ(θ)

β̂(θ)

]
=

[
PAy
X ′y

]
. (13)

The Cholesky factor of the system matrix for the PLS problem can be ex-
pressed using L, RZX and RX , because[

P (AA′ + I)P ′ PAX
X ′A′P ′ X ′X

]
=

[
L 0

R′
ZX R′

X

] [
L′ RZX

0 RX

]
. (14)
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In the lme4 package the "mer" class is the representation of a mixed-e�ects
model. Several slots in this class are matrices corresponding directly to the
matrices in the preceding equations. The A slot contains the sparse matrix
A(θ) and the L slot contains the sparse Cholesky factor, L(θ). The RZX and
RX slots contain RZX(θ) and RX(θ), respectively, stored as dense matrices.

It is not necessary to solve for ũ(θ) and β̂(θ) to evaluate the pro�led

log-likelihood, which is the log-likelihood evaluated θ and the conditional
estimates of the other parameters, β̂(θ) and σ̂2(θ). All that is needed for
evaluation of the pro�led log-likelihood is the (penalized) residual sum of
squares, r2, from the penalized least squares problem (12) and the determi-
nant |AA′ + I| = |L|2. Because L is triangular, its determinant is easily
evaluated as the product of its diagonal elements. Furthermore, |L|2 > 0 be-
cause it is equal to |AA′+ I|, which is the determinant of a positive de�nite
matrix. Thus log(|L|2) is both well-de�ned and easily calculated from L.

The pro�led deviance (negative twice the pro�led log-likelihood), as a
function of θ only (β and σ2 at their conditional estimates), is

d(θ|y) = log(|L|2) + n

(
1 + log(r2) +

2π

n

)
(15)

The maximum likelihood estimates, θ̂, satisfy

θ̂ = argmin
θ

d(θ|y) (16)

Once the value of θ̂ has been determined, the mle of β is evaluated from (13)

and the mle of σ2 as σ̂2(θ) = r2/n.
Note that nothing has been said about the form of the sparse model

matrix, Z, other than the fact that it is sparse. In contrast to other methods
for linear mixed models, these results apply to models where Z is derived
from crossed or partially crossed grouping factors, in addition to models with
multiple, nested grouping factors.

The system (13) is similar to Henderson's �mixed-model equations� (refer-
ence?). One important di�erence between (13) and Henderson's formulation
is that Henderson represented his system of equations in terms of Σ−1 and,
in important practical examples, Σ−1 does not exist at the parameter esti-
mates. Also, Henderson assumed that equations like (13) would need to be
solved explicitly and, as we have seen, only the decomposition of the system
matrix is needed for evaluation of the pro�led log-likelihood. The same is
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true of the pro�led the logarithm of the REML criterion, which we de�ne
later.

3 The generalized least squares approach to lin-

ear mixed models

Another common approach to linear mixed models is to derive the marginal
variance-covariance matrix of Y as a function of θ and use that to determine
the conditional estimates, β̂(θ), as the solution of a generalized least squares
(GLS) problem. In the notation of �1 the marginal mean of Y is E[Y ] = Xβ
and the marginal variance-covariance matrix is

Var(Y) = σ2 (In +ZTSST ′Z ′) = σ2 (In +A′A) = σ2V (θ), (17)

where V (θ) = In +A′A.
The conditional estimates of β are often written as

β̂(θ) =
(
X ′V −1X

)−1
X ′V −1y (18)

but, of course, this formula is not suitable for computation. The matrix V (θ)
is a symmetric n×n positive de�nite matrix and hence has a Cholesky factor.
However, this factor is n × n, not q × q, and n is always larger than q �
sometimes orders of magnitude larger. Blithely writing a formula in terms of
V −1 when V is n×n, and n can be in the millions does not a computational
formula make.

3.1 Relating the GLS approach to the Cholesky factor

We can use the fact that

V −1(θ) = (In +A′A)
−1

= In −A′ (Iq +AA′)
−1

A (19)

to relate the GLS problem to the PLS problem. One way to establish (19)
is simply to show that the product

(I +A′A)
(
I −A′ (I +AA′)

−1
A
)

=I +A′A−A′ (I +AA′) (I +AA′)
−1

A

=I +A′A−A′A

=I.
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Incorporating the permutation matrix P we have

V −1(θ) =In −A′P ′P (Iq +AA′)
−1

P ′PA

=In −A′P ′(LL′)−1PA

=In −
(
L−1PA

)′
L−1PA.

(20)

Even in this form we would not want to routinely evaluate V −1. However,
(20) does allow us to simplify many common expressions.

For example, the variance-covariance of the estimator β̂, conditional on
θ and σ, can be expressed as

σ2
(
X ′V −1(θ)X

)−1
=σ2

(
X ′X −

(
L−1PAX

)′ (
L−1PAX

))−1

=σ2 (X ′X −R′
ZXRZX)

−1

=σ2 (R′
XRX)

−1
.

(21)

4 Trace of the �hat� matrix

Another calculation that is of interest to some is the the trace of the �hat�
matrix, which can be written as

tr

([
A′ X

]([A′ X
I 0

]′ [
A′ X
I 0

])−1 [
A
X ′

])

= tr

([
A′ X

]([ L 0
R′

ZX R′
X

] [
L′ RZX

0 RX

])−1 [
A
X ′

])
(22)
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